Replanning Using Hierarchical Task Network
and Operator-Based Planning

Xuemei Wang* and Steve Chien

Jet Propulsion Laboratory, California Institute of Technology
4800 Oak Grove Drive, M/S 525-3660, Pasadena, CA 9110!)-8099

Abstract. In order to scale-up to real-world problems, planning sys-
tems must be able to replan in order to deal with changes in problem
context. In this paper we describe hierarchical task network and operator-
based re-planning techniques Which allow adaptation of a previous plan
to account for problems associated with executing plansin real-world do-
mains with uncertainty, concurrency, changing objectives. We focus on
replanning which preserves elements of the original plan in order to use
more reliable domain knowledge and to facilitate user understanding of
produced plans. We also present emnpirical results documenting the effec-
%iveness of these techniques in a NASA antenna operations application.

Keywords: planning andreasoning ¢cm action and change, replanning, real-
world application, HTN/operator-based planning

1 Introduction

As Al planning techniques move from the research environment to real-world
applications, it is critical to address the needs that arise from their application
environment. Specificially, many application domains are dynamic, uncertain,
concurrent, and have changing objectives. Real domains may be dynamic be-
cause: the world can change independently of the plan being executed; the results
of performing an action often cannot be predicted with certainty; actions and
events may occur simultaneously; new goals can arise and old goas can become
unimportant as time passes. In order to adapt to such context, planning systems
must be able to replan, i.e., to appropriately adapt and modify the current plan
to these unexpected changes in goa or state.

In this paper, we describe our replanning framework that addresses the
above issues in real-world applications. This framework presumes a hybrid ap-
proach using both hierarchical task network (HTN) planning (as typified by
[Erol et @ 1994]) and operator-based (as typified by [Pemberthy and Weld 1992,

* Current address: Rockwell Science Center, 444 High St. Suite 400, Palo Alto, CA
94301, mei@rpal.rockwell.c om

*T'his paper describes work performed by the Jet Propulsion Laboratory, California

Institute of Technology, under contract with the National Aeronautics and Space

Administration.

Carbonell et a 1992]) methods. This isa commonand powerful planning archi-
tecture (such as O-Plan[Currie and Tate 1991], DPLAN [Chien et al 1995], and
[Kambhampati 19'35]). We present our general framework as well as its applica-
tion to a real application domain,

In our work, we focus on replanning which preserves elements of the original
plan instead of planning from scratch from tile current state for the following
reasons:

— Domain knowledge reliability. Fucoding of domain knowledge is imperfect -
domain knowledge for nominal operations scenarios is most likely to be cor-
rect. Thus, by re-using as much of the nominal operations domain knowledge
as possible, the risk of encountering faulty domain knowledge is reduced.

— Operator understanding. The users who actualy carry out the plan execu-
tions are most familiar with nomina operations and small departures from
nominal operations are far easier for them to understand than novel action
sequences.

In this paper, we first briefly describe the DPLAN planning framework (Sec-
tion 2). We then give detailed descriptions for our replanning approach for un-
expected state changes (Section 3). We present application of the replanning
approach to a real-world problem, namely the Deep Space Network (DSN)An-
tenna Operations domain. The empirical results demonstrate the effectiveness
of our replanning algorithms (Section 4). And finally we end this paper with
discussions, related work, and conclusions.

2 Planning using hierarchical task network and
operator-based planning

Our replanning approach presumes an integrated HTN /operator planning archi-
tecture as embodied in OPLAN ([Currie and Tate 1991]), DPLAN ([Chien et al 1995])
and [Kambhampati 1995]. In this approach, a planner can use multiple planning
methods and reason about both activity-goals and state-goals. Activity-goals
correspond to operational or nomn-operational activities and are usualy manip-
ulated using HTN planning techniques. State-goals correspond to the precon-
ditions and effects of activity-goals, and are achieved through operator-based
planning. State-goals that have not yet been achieved are also considered non-
operational. Figure 1 shows the procedures used for refining these two types of
goals. As soon as a refinement strategy is applied to an activity-goal or state-
godl, it is removed from the list of non-operational goals. Planning is complete
when all (activity) goals are operational and all (state) goals have been achieved.
Further details on integrating HTN and operator-based planning paradigms is
described in [Chien et a 1995).

If g is an Activity-Goal,

1. Decompose: For each decomposition rule r inR which can decompose g, apply r
to produce a new plan P', If all constraintsin P’ are consistent,then add 1 to Q.

2. Simple Establishment: For each activity-goal ¢’ in U that can be unified with g,
sitnple establish g using g' and produce a new plan P'. If all constraints in P’ are
consistent, then add P’ to Q.

If g is a State-Goal,

1. Step Addition: For each activity-goal effect that can unify with g, add that goal to
P’ to produce a new plan [*. If the constraints in 1“ are consistent, then add P’ to
Q.

2. Simple Establishinent: For each activity-goal g' in U that has an effect e that can
be unified with g, simple establish g using e and produce a new plan P. If all
constraints in P’ are consistent, then acid P’ to Q.

Fig. 1. Goa Refinement Strategies

3 Replanning for unexpected state changes

This section describes our algorithm for replanning when the world changes
independently of the plan being executed. The input to the replanning algorithm
consists of

—the original plan being executed (oplan),
— alist of actions already executed (executed-activities), and
= the current state (current-state)®

Our approach for replanning assumes that (1) there is a default value for
each state-goal, (2) there are well-known methods (act ivities) for establishing
tile default value for each state-goal, (3) the original plan is applicable from a
state where each relevant state-goa is at its default value. These assumptions
are valid in most application domains. For example, in a manufacturing domain,
(1) each device (e.g. robot, clamp) has a “home” position from which the original
plan executes. The home position holds default values for state-goals relevant
to the device; (2) there are methods to bring each device to its home position,
thus establishing the default values for the relevant state-goals; (3) each device
is aways at its home position at the beginning of executing the original plan.

The replanning agorithm then re-uses as much of the origina plan as possi-
ble while minimizing the amount of re-execution. The replanner returns a plan
consisting of the activities that need to be re-executed and those not executed,
as well as the ordering constraints.

Our replanning approach proceeds as shown in the following four steps. Firgt,
the algorithm creates an activity whose effects reflect the changes to the plan

*In fact, it is not necessary to know the complete current state, as long as we have
the ability to query whether a state-goal relevant to the original plan is true or false
in the current st ate.

caused by theexccuted activities (Figure 3). Second, the algorithin determines
the state-goals necessary for continuing execution Of the plan, but are violated
due to unexpected state changes, and then applies the “reset” activities to bring
each state-goal to its default value (Figure 4). Finaly, the planner determiners
which executed activities should be re-executed (Figure 5). This algorithm guar-
antees that the repaired plan re-executes al the activities that are necessary to
successfully achieve the top-level goals.

Inputs: oplan, the original plan
ezecuted-activities, a list of activities already executed,
current-sigte, the current state

Qutput: repaired-plan, repaired plan

1, appliedGoal « executeActivities(ezecuted-activities, oplan)
2. Resel gpqls ¢ resetGoals (oplan, current-state, erecuted-gctivities-list)
3. repaired-plan « replan(oplan, resetGoals, applied Goal)

Fig. 2. Replanning for unexpected state changes

This rest of this sectiou gives det ailed descriptions of our replanning paradigm.
The descriptions employ a crucial concept, namely violated state-goal. A
state-goal sg is violated state-goal given an original-plan (oplan) and a list
of executed activities (executed-activities-list), if and only if there is a protection
(protect (not sg)) from gfto 92 inoplan, where g1 is in the list of executed
activities (CRC“th'aC”m”es'list),while g2is not.

3.1 Executing activities

Figure 3 describes how the origina plan is modified to reflect the changes in the
plan by the executed activities. The algorithm creates an activity appliedGoal
whose effects are the state changes caused by executing executed-activities-list.

We assume that ezecuted-activities-list is given in order of the completion of
execution of each activity. In step 1, the effects and preconditions of applied-
Goal are initialized to an empty set. In step 2, the effects of each activity in
erecuted-activities-list are added to the effects of appliedGoal in order of their
executions. An effect of an activity may overwrite the effect of a activity exe-
cuted earlier. In step 3, al the activities in ezecuted-activities-list are removed
fromn the operational goal list of the plan, because in principle they should not
have to be re-executed again. In step 4, al the violated state-goals are located
ancl added back to the nonoperational goal list of the nlan because they need
to be re-achieved in order to ensure that the preconditionsofithe ¢ ovecyted
activities are satisfied. In step 5, appliedGoal is promoted before all the activities
that have not been executed yet.

Inputs: executed-activities-list, a list of activities already executed,
oplan, original plan
Output: appliedGoal, an activity representing the effect of executing executed- qctivities-
list
1. Initialize: Fffects(appliedG oal) « {}, Preconds(a ppliedGoal) ¢ {}
2.For each activity a € erecuted-activities -list, do:
For each effect e € Effects(a), do:
if e € Effect(applied(oal), do nothing,
else if {not e) € Effect(appliedGoal), do:
Effect(appliedGoal} « (Effect(appliedG oal)u {e})\ {(note)}
clse Effect(appliedGoal) < Effect(appliedGoal) U {e}
3. QOperationalGoalsf{oplan) - OperationalGoals (oplan) \ erecuted-activilies -list.
4. For each effect e € Fffects(appliedG oal) do:
if (not e) is a violated state-goal, do:
NonOperationalGoals(oplan) ¢ NonOperationalGoals{oplan) U (not e)
5. For every activity a € OperationalGoals(oplan), do: add a after appliedGoal

Fig. 3. Executing activities: creating an activity eppliedGoalto reflect the changes to
the plan caused by executing the activities.

3.2 Reset state-goals

Figure 4 describes how the original plan is modified to reflect the changes in
the plan caused by resetting the violated state-goals. The algorithm creates an
activity Reset Goals for resetting the state-goals, and adds this activity into the
origina plan. In step 1, we initialize reset Goals to an activity without precon-
ditions or effects, and insert it to the original plan. In step 2, we compute all
the violated state-goals clue to unexpected state changes (violatedGoals), i.e.,
those that are true in the current state but not in the expected state of applying
executed activities. In step 3, we update reset Goals to account for the activities
that establish the default values of wiolatedGoals. Since establishing the default
values may result in further protection violation, in step 4 we locate al such
violations and move them back to the nonoperational goals of oplan to reachieve
them later. In step 5, resetGoals is promoted before al the activities that have
not been executed.

3.3 Replanning

Figure 5 describes how the replanner determines which activities need to be
re-executed. The algorit hin analyzes the protections in the original plan, re-
executing activities that are necessary to re-establish the protections that arc
violated by tile effects of appliedGoal or resetGoals. In this algorithm, the variable
re-execute-activities is used to store the activities that need to be re-executed, or
preconditions that need to be re-achieved. This variable is used to ensure that
each precondition is re-achieved a most once so that the replanner does not go
into an infinite loop. In essence, the replanning agorithm recursively determines

Inputs: current-state, ereculed-activities-list, oplan Output: oplan including resetGoals

1. Initialize reset Goals and insert it to oplan
2. violatedGoals t {state-goal g¢: g € current-slate, ¢ # erpected-state, and g is a
violated state-goal }
3. For each g € ViolatedGoals, do:
E flects(resetGoals) «- Effects(resetGoals) U default-value (g)
4.For each effect e € resetGoals, do:
if e is a violated state-goal, then
NonOperationalGoals (oplan) « NonOperationalG pals(oplan) U (not e)

5.For every activity U € OperationalGoals(oplan), do: add @ after resetGoals

Fig. 4. Resetting goals: creating an activity resetGoals to reflect the changesto the
plan caused by resetting the violated goals.

which executed activities are used to achieve the protections that are violated
by appliedGoal or resetGoals, re-executes these activities (i.e. adds them back
to the operational goals of the plan) to ensure that the preconditions of the
re-executed activities and not-executed activities are achieved. During replan-
ning, the nonoperational goals of the plan are either the preconditions of a not
executed activity that are undone by appliedGoal or resetGoals, or the activi-
ties that were used to achieve these preconditions in the original plan, or the
regressed preconditions of these activities. lhe algorithm repeatedly chooses a
god, currentGoal, from the nonoperational goal list, and removes it fromn the
list (steps 1 and 2). In step 3, if currentGoal is a precondition of an activity,
then the activity g that was used to achieve currentGoalin the origina plan
is added to the operational (or nonoperational) goal list of oplan.Inaddition,
for any protection from an executed activity to g, if the protection is violated
by resetOp or appliedGoal, then the protected fact is added to the nonopera-
tional goal list because it should be re-achieved. Furthermore, if the effects of
gviolate a protection from unexecuted activity to a not yet executed activity,
then the violated protection is also added to thenonoperational goals so that it
can be re-achieved. In step 4, if currentGoal is an activity goal, then the goals
that currentGoal decomposed into in the original plan are added back to the
(non) operational goal list of oplan. Finally, weensure thatresetOp s ordered
before any other activities in the repaired plan. Activities in the operational goal
list form the plan returned by the replanner.

The ordering constraints of the original plans are kept as they are. Since
the only ordering constraints the replanner adds to the original plan are to add
the resetGoals before any activities need to be re-executed and any activities
not yet executed, the replanning algorithm does not add any inconsistency to
the original plan. Anaysis of the soundness and complexity can be found in
Section 5.

For example, suppose the original plan is shown in Figure 6. The protections
in the plan are: (1) P1: protect qfrom A to B, (where A achieves ¢), and (2)

Inputs: oplan, plan with eppliedGGoal and reset(ouls added in
Qutput: repaired-plan
R Y RS
1. current soal t choose a goal from NonlperationalGoals(oplan);
2. NonOperatio nalGoals(oplan) + NonOperationalGoals(oplan) \ {currentGoal}
3. if current Goal is a precondition-goal, do:
3.1. g+-locate the activity achieving currentGoal.
if g € rc-execute-acttutftfs, goto 1.
3.2. if g is an operational goal then:
OperationalG pals{oplan) « OperationalGoals(oplan) U {g}
else NonOperationalGoals(oplan) i- NonOperationalGoals(oplan) U {9)
3.3. for every protection (protect p from g6 to g), do:
if pisdeleted by 7esel Goals or applied Goal and g ¢ re-erecute-activities,
then:
NonOperationalGoals(oplan) ¢ NonOperationalGoals(oplan) U {p},
re-execule-activities +— re-erecute-activities U {p}
3.4. for every protection (protect p) from ¢! to g.?, and every effect e of g, such
that p = (note), g1 € executed-activities-fist, g2¢ executed-activities-list,
p ¢ re-execute-activities, do:
NonOperationalGoals{oplan) - NonOperationalGoals(oplan) U {p)
re-erecule-activities t re-erecute-activities U {p}
3.5. re-execute-activities 4- re-exrecute-actjyities U {g}
4. if currentGoal is an activity-goal, do:
for every child g of currentGoel,
If g ¢ re-ezecate-activities, then
if g is @n operational goal, then:
OperationalGoals (oplan) <~ OperationalGoals(oplan) U {g}
else Non OperationalGoals (oplan(—~NonOpera‘tionalGoals(&lb%Z U {g}

- ge rugl\lre'g%lgﬁtivity a € Operational(i balsfoplan), 'do! add 4 aftér rese

Fig. 5. Replanning: determining which activities need to be re-executed.

P2: protect r from B to D (where B achieves r). Suppose that when activities A,
B, and Care executed, and activity D is not yet executed, an unexpected state
change occurs that results in deleting g and r from the state. Then activity B
needs to bere-executed because protection P2 is violated by the reset operator.
Activity A also needs to be re-executed because Pl is violated by the reset
operator and activity B needs to be re-executed. But activity C does not need
to be re-executed. The repaired plan is shown in Figure 7.

4 Empirical Evaluation

Our replanning algorithm is a general approach which uses a domain-independent
hybrid HTN/operator planning architecture. It has been tested in a real appli-
cation, namely, the deep space network (DSN) antenna operation domain. This
section describes the application domain, how the general replanning problem
maps onto the real application domain, as well as empirical test results

\
O--w - >
0

Fig. 6. Au example of an original plan. Unexpected
state changes occurs when activities A, B, and C are
executed, but D is not executed.

D

Fig. 7. Repaired plan where activities A, B are
re-executed UPON an unexpected state change.

4.1 Planning for Deep Space Network Antenna Operations

The Deep Space Network is a set of world-wide antenna networks which is main-
tained by the Jet Propulsion Laboratory (J Pl.). Through these antennas, JPL
is responsible for providing the communications link with a multitude of space-
craft. Operations personnel are responsible for creating and maintaining this link
by configuring the required antenna subsystems and performing test and cali-
bration procedures. The task of creating the communications link is a manual
and time-consuming process which requires operator input of over a hundred
control directives and the constant monitoring of several dozen displays to de-
termine the exact execution status of the system. Recently, a system called the
Link Monitor and Control Operator Assistant (LMCOA), has been developed
to improve operations efficiency and reduce precalibration time. The LMCOA
provides semi-automated monitor and control functions to support operating
DSN antennas. One of the main inputs to the LMCOA is a temporal depen-
dency net work (TDN). A TDN is a directed graph that incorporates temporal
and behavioral knowledge. This graph represents the steps required to perform a
communications link operation. In current operations, these TDNs are developed
manually. DPLAN is an Al planning system designed to automatically generate

these TDNs based 011 input information describing the antenna track type and
the necessary equipment configuration. DPLAN integrates HTN planning and
operator-based planning. Given a set of antenna tracking goals and equipment
information, DPLAN then generates a list of antenna operation steps that will
create acommunications link with orbiting spacecraft.

4.2 Replanning Scenarios for the DSN domain

The DSN Antenna Operations domain is dynamnic, uncertain, concurrent, and
has changing objectives. This domain is dynamic because the current state may
unexpectedly change due to external events such as equipment (subsystem) fail-
ures. It is uncertain because actions may not aways achieve their desired effects.
It is concurrent because actions pertaining to different subsystems wnay occur
simultaneously. It has changing objectives becausenew goals may be added after
the execution of the origina plan has aready begun. Our replanning system is
able to replan in all these scenarios. In our empirical evaluation, we focus on the
first scenario, i.e., replanning when the world changes independently of the plan
being executed.

Note that one alternative to replanning would be to simply reset al of the
subsystems in use and completely restart the plan from scratch, re-achieving
all of the desired conditions. We name this approach complete-reset approach.
In the general case this approach undesirable because of the domain knowledge
reliability and operator understanding reasons described in Section 1. Inthe DSN
antenna operations domain this approach is also too inefticient to be applicable
for two reasons:

~ Complete-reset approach is slow from an execution time standpoint. DSN
antennas are a scarce over-subscribed resource. Completely restarting to re-
cover from failures would reduce antenna availability for tracking purposes
by increasing downtime due to time lost during recovery from changed goals,
state changes, or failed actions. Additionally, delaying a track may result in
lost data because it is generally infeasible alter the spacecraft command
sequence on short notice.

- L'omplete-reset approach involves resetting (powering off and then back on)
al of the subsystems. This power cycling of the hardware introduces unnec-
essary wear on tile expensive and scarce DSN subsystems.

Thus our replanning algorithm re-uses as much of the original plan as pos-
sible while minimizing the amount of re-execution by restoring the subsystem
toa functioning state (generally through resetting the subsystem) and by re-
achiceving relevant states before continuing plan execution.

4.3 Empirical results

In Section 1, wc stated that replanning by re-using the nominal plan was de-
sirable because the domain knowledge for nominal operations is more reliable?
.In order to verify this claim, we tested our replanning algorithm on aseries
of replanning problems. In these experiments, the replanning algorithmn used
knowledge developed for nomina operations to replan for 5 problems for each of
the 3 types of replanning scenarios. subsystem failure, additional service request,
and activity failure, to produce a total of 15 plans. A domain expert validated 6
plans randomly selected from the 15 repaired P1ans generated by our replanuer.
The limited size of the verified test set is due to the significant effort required
to manually verify a TDN and the scarcity of the pSN domain experts. The qo-
main expert considered al the 6 examined replans to be correct (i.e they would
achieve the goals from the replan state). These results are summarized in Table
1

#obt pians [Hoblbanss where plar. . pert = plart,cplanner % corredt repaired plans
6 6 10070

Table 1. Expert judged correctness of the repaired plan

The second criterion for evaluation is that it is critical to minimize execution
time of the TDNs. From the replanning point of view, this means minimizing
the number of activities that need to be re-executed. For this, we compared the
number of activities that are re-executed in the repaired plan versus the corre-
sponding number in the plans generated using complete brute force replauning
(i.e. resetting everything and starting from scratch). In the 15 replanning cases,
the average number of activities in the original TDN is 13.8, the average number
of activities executed when the failure occurs is 8.07, and the average number
of activities re-executed using our replanning agorithm is 1.13. We see that the
proportion of re-executed activities using our replanning algorithm is only 14%
(1 .13/8.07) of those using brute force - resetting every subsystem and start-
ing from scratch. This demonstrates that the repaired plans generated by our
replanner are significantly more efficient than brute-force replanning. Table 2
summarizes the empirical results for repaired plan efliciency.

5 Discussions
In this section, we analyze some properties of the our replanning algorithm

‘For example, commonly there is an assumed execution context for an operator in
nominal usage which is not explicitly represented in operator preconditions.

- I e - . i
of plans| avg. # of re-executed activities lefliciency ratio
- -

mn pl(lnreplanner m])[(”l[rnyu—scrutch

15 1.13 8.07 14%

Table 2. Efficiency of the repaired plan

5.1 Termination and soundness

Our replanning agorithm for determining which activities require ye-execution
(described in Figure 5) will terminate because: (1) in the worst case when al the
executed activities are added back to the operational goal list of the plan, the
nonoperational goals of the plan will be empty; (2) when a violated precondition
is added back to the nonoperational gog ligt, it takes @ finite number of iterations
to add the executed activity that achieves this precondition; and (3) every goa
list is allowed to be added back to the (non)operational goal list at most once.
Thus the complexity of the replanning algorithm is O(n) where n is the length
of the origina plan.

Our replanning algorithms are sound assuming that the domain knowledge
is correct. The soundness proof follows from analyzing the algorithm in Figure 5
by showing: (1) every possible violation of the previously achieved state is iden-
tified in the algorithm; (2) every violated state is re-established by re-executing
activities in the origina plan that established these conditions. Since the orig-

inal plan is sound, the replanning algorithm ensures that there are no violated
protections in the repaired plan, and thusis sound.

5.2 Generality

Out replanning algorithm is based on protection analysis. The protections in our
plans are derived from the the preconditions and effects of activities in the plan.
Thus our replanning approach is applicable to all planners that maintain such
protections, including [Pemberthy and Weld 1992, Carbonell et a 1992, Chien et a 1995].

We also learned that planners with only hierarchical decomposition capabil-
it y are insufficient for replanning unless proper protections are specified. Most
decompositional rules only specify how to decompose a high level activity to low
level activities and the ordering constraints among them. Protections are not re-
quiredto generate initial correct plans, although most HTN planners allow and
encourage the specification of protections. In contrast, operator-based planning
requires that preconditions and effects of each activity be encoded explicitly in
order to function properly. Protections are generated by the planner automat-
ically fromthe preconditions and effects, We believe that since protections are
essential for replanning, operator-based planning is more natural for replanning
purposes.

6 Related Work

Onessimilar replanning system is the CHEF system [Hammond 1989]. In CHEF,
failures are dl clue to unforseen god interactions. The CHEF system classifies
a failure, infers amissing goal, and applies a critic to repair the plan. This
problem differs from our replanning problem - in our case the problem is not
an unrecognized goal interaction but rather a change in the problem state or
goals. Thus, in our replanning problemn one (inefficient) aternative is to sitaply
re-execute the entire plan. This would be unwise in the CHEF replanning context
because it is assumed the plan would simply fail agaiu. In our replanning context,
the desired outcome is to recover so asto achieve the possibly altered goal set
while retaining as much of the original planas possible.

SIPE [Wilkins 1988] aso performs replanning in response to unexpected ex-
ternal events that change the state. SIPE first classifies the failure type and then
uses this classification to apply a critic to repair the plan. Again, our replan-
ning problem is constrained such that resetting the subsystems and re-executing
the entire plan is a viable alternative - the goal is to minimize unnecessary 1 e-
execution. In SIPE’s replanning scenario arbitrary replanning may be required.
Thus, SIPE uses specific information in the form of critics. In our replanning
problem the emphasis is on replanning to re-use the origina plan, thus our ap-
proach focusses on re-establishing conditions using portions of the origina plan.

Other previous work in the case-based reasoning or analogy work concen-
trates on adapting a case for a similar problem to the new problem situation
[Veloso 1992, Karnbhampati 1990]. Their agorithms involve adding and delet-
ing activities from the original plan based on an anaysis of the applicability of
the dependencies to the current problem context. This work differs from ours in
two ways. First, in our approach, we handle situations where part of the plan
is likely to have been executed when replanning occurs. Thus replanning must
account for the altered initial state. Second, in our approach, minimizing the
number of re-executed activities is desirable.

Previous work in the framework of integrating planning, executing, andre-
planning [Knoblock 1995, Drabble 1995] relies on the domain designer to provide
repair methods for each type of failure. In the replanning problems we are ad-
dressing, it is impractical to specify a repair method for each specific class of
failure. For example, in the DSN domain, there may be many different kinds
of failures, failures may happen at almost any time during execution, there are
tens of subsystems, etc. Hence, we have designed our algorithms to wor k from
more genera information (such as the execution status of activities). However,
we still require certain specific information (e. g., the relevant subsystem to reset
for an activity failure).

7 Future Work

This paper has presented a general framework for replanning required by changes
in problem context. However, there are several areas for future work which are

driven by operational requirements of our target application domainof DSN an-
tenna operations. This paper represents a first step towards tackling this com-
plex problem and there are numerous outstanding issues which remain to be
address ed. We describe several of these issues below.

In tile DSN, there is a tradeoff of the granularity of representing the activities,
The activities are the lowest level primitives that the planner reasons about:
each activity may contain tens of directives (commands).Sometimes during an
execution failure, instead of re-executing a whole activity, it is possible to only
re-execute a subset of al the directives in the activity, so that the total execution
time may be shortened. To capture this plan repair knowledge, we can break an
activity down to anumber of activities, but then the planner must reason at
a lower level of abstraction. This may result in a less maintainable knowledge
base for the planner and degraded planner performance (planning speed). One
area for future work is to better understand the tradeoffs and implications of
selecting a particular level of abstraction for the planner.

In the DSN domain, actions take time. If the recovery actions take an ex-
tended amount of time, there may notbe enough time to perform a planned
equipment performance test as well as starting the acquisition of data at the
required time. In this case, a tradeoff must be evaluated. For example, should
the data be captured witbout doing the performance test? Or would the data
be useless without the performance test? Endowing a planning system to rea
son about the utility of these differing courses of action to take the best overall
course of action is a long-term goal.

In the DSN domain, during execution, some subsystems may be removed
due to competing requests. Usually, these subsystems arc not needed any more
by the task, andare requested to be used by other tasks. What is the proper
way to remove the equipment from the system? How do we unlink it with other
subsystems? Enhancing the planning system to be able to reason about these
types of temporal constraints and requests (using a more expressive temporal
representation) is an area for future work.

Finaly, in the DSN, the state of each of the subsystems is complex and con-
tains a large amount of information. Although in principle, all relevant state in-
formation can be inferred by an expert operator, in practice this is quite difficult.
How can the planning system recover from failures in a way so as to reduce the
need for operators to perform complex, time-consuming and knowledge-intensive
diagnoses?

8 Conclusions

In order to scale-up to real-world problems, planning systems must be able to
replan in order to deal with changes in problem context. This paper has de-
scribed hierarchical task network and operator-based re-planning techniques to
adapt a previous plan to account for: state changes, added new goals, and failed
actions. This approach attempts to preserve elements of the original plan in
order to utilize more reliable nominal operations domain knowledge and to facil-
itate user understanding. In addition, the replanning methods attempt to avoid

unnecessary re-achievement of goals. We have also presented empirical results
documenting the effectiveness of these techniques in a NASA antenna operations
application.

References

[Carbonell et al 1992] Carbonell, J. G.; Blythe, J.; Etzioni, C),; Gil, Y.; Joseph, R;
Kahn, D.; Knoblock, C.; Minton, S.;Pérez, M. A.; Reilly, S.;Veloso, hi.; and
Wang, X. PRODIGY 4.0: The Manual and Tutorial. Technical report, School of
Computer Science, Carnegie Mellon University, 1992.

[Chien et al 1995] S. Chien, A. Govindjee, T. Estlin, X. Wang, and R. Hill Jr., Inte-
grating Hierarchical Task Network and Operator-based Planning Techniques to
Automate Operations of Communications Antennas, IEEE Expert, December
1996.

[Drabble 1995] B. Drabble. Replanning in the O(Plan) architecture, Personal com-
munication, 1995.

[Erol et al 1994] K.Erol, J. Hendler, and D. Nau, UMCP:A Sound and Complete
Procedure for Hierarchical Task Network Planning, Proceedings of the Second
International Conference on Al Planning Systems, Chicago, IL, June 1994, pp.
249-254.

[Haminond 1989] K. Hammond. Case-Based Planning: Viewing planning as a memory
task. 1989.

[Kambhamnpati 1990] S. Kambhampati. A theory of plan modification. In Proceedings
of the Eighth National Conference on Artificial Intelligence, Boston, MA, 1990.
(Kambhampati 1995] S. Kambhampati. A Comparative analysis of Partial Order
Planning and Task Reduction Planning In ACM SIGART Bulletin, Vol.6.,No.1,

1995.

[Knoblock 1995] C. Knoblock. Planning, executing, sensing, and replanning for infor-
mation gathering. In Proceedings of IJCA 195, Montreal, CA, 1995,

[Pemberthy and Weld 1992] J. S. Pemberthy and D. S. Weld, UCPOP: A Sound Com-
plete, Partial Order Planner for Al) I,, Proceedings of the ‘Third International Con-
ference on Knowledge Representation and Reasoning, October 1992.

[Currie and Tate 1991] K. Crrrrie and A. Tate, The Open Planning Architecture, In
Artificial Intelligence, 51(I), 1991.

[Veloso 1992] M. Veloso. Learning by Analogical Reasoning in General Problem Solv-
ing. PhD thesis, School of Computer Science, Carnegie Mellon University, Pitts-
burgh, PA, 1992.

[Wilkins 1988] D. Wilkins, Practical Planning: Extending the Classical Al Planning
Paradigm. Morgan Kaufmann, 1988.

This article was processed using theIATiX macro package with LLNCS style

